Empirical processes in probabilistic number theory : the LIL for the discrepancy of ( n k ω ) mod 1

نویسندگان

  • Robert Tichy
  • Robert F. Tichy
چکیده

We prove a law of the iterated logarithm for the Kolmogorov-Smirnov statistic, or equivalently, the discrepancy of sequences (nkω) mod 1. Here (nk) is a sequence of integers satisfying a subHadamard growth condition and such that linear Diophantine equations in the variables nk do not have too many solutions. The proof depends on a martingale embedding of the empirical process; the number-theoretic structure of (nk) enters through the behavior of the square function of the martingale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irregular discrepancy behavior of lacunary series

In 1975 Philipp showed that for any increasing sequence (nk) of positive integers satisfying the Hadamard gap condition nk+1/nk > q > 1, k ≥ 1, the discrepancy DN of (nkx) mod 1 satisfies the law of the iterated logarithm 1/4 ≤ lim sup N→∞ NDN(nkx)(N log logN) −1/2 ≤ Cq a.e. Recently, Fukuyama computed the value of the lim sup for sequences of the form nk = θ , θ > 1, and in a preceding paper t...

متن کامل

On the law of the iterated logarithm for the discrepancy of lacunary sequences

A classical result of Philipp (1975) states that for any sequence (nk)k≥1 of integers satisfying the Hadamard gap condition nk+1/nk ≥ q > 1 (k = 1, 2, . . .), the discrepancy DN of the sequence (nkx)k≥1 mod 1 satisfies the law of the iterated logarithm (LIL), i.e. 1/4 ≤ lim supN→∞NDN (nkx)(N log logN)−1/2 ≤ Cq a.e. The value of the limsup is a long standing open problem. Recently Fukuyama expli...

متن کامل

Discrepancy in generalized arithmetic progressions

Estimating the discrepancy of the set of all arithmetic progressions in the first N natural numbers was one of the famous open problem in combinatorial discrepancy theory for a long time, successfully solved by K. Roth (lower bound) and Beck (upper bound). They proved that D(N) = minχ maxA | ∑ x∈A χ(x)| = Θ(N1/4), where the minimum is taken over all colorings χ : [N ] → {−1, 1} and the maximum ...

متن کامل

The Sum Graph of Non-essential Submodules

Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natura...

متن کامل

Discrepancy of Sums of two Arithmetic Progressions

Estimating the discrepancy of the hypergraph of all arithmetic progressions in the set [N ] = {1, 2, . . . , N} was one of the famous open problems in combinatorial discrepancy theory for a long time. An extension of this classical hypergraph is the hypergraph of sums of k (k ≥ 1 fixed) arithmetic progressions. The hyperedges of this hypergraph are of the form A1 + A2 + . . . + Ak in [N ], wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006